

Biology and control of invasive Brown Treesnakes on Guam, USA

Robert N Reed

Invasive Species Science Branch

Outline of presentation

- Brown Treesnake (BTS) biology
- Impacts to native species
- Review of control tools
- Control tool validation
- Interdiction
- Rapid Response

USGS Invasive Reptiles Project

- Brown Treesnake on Guam
- Burmese Python in Florida
- Boa Constrictor in Puerto Rico
- Watersnakes in California

USGS Invasive Reptiles Project

- Brown Treesnake CONTROL TOOLS
- Burmese Python DETECTION

Brown Treesnake, Boiga irregularis

- Nocturnal, arboreal
- Arrived on Guam with WWII surplus
- Native to Australopapuan region
- Mean body size 1.2 m
- Generalist predator on vertebrates

BTS suppress small mammals on Guam

BTS suppress geckos on Guam

BTS suppress geckos on Guam

Ecosystem effects

science for a changing world

- Most birds eliminated
- Rodents reduced by ~90%
- Several lizards eliminated How do snakes maintain populations?

6,000 - 12,000/ha

Invasive snakes can act as low-energy apex predators on islands

Control tools

Research funding for BTS control 1990-2014

Research funding for BTS control 1990-2014

\$25 million

Control tools

How do we know if control tools are effective for all animals in a population?

Validating control tools

- 5 ha (12.3 acre) enclosure
- Closed to BTS immigration and emigration
- Average densities 27 snakes/ha (11/acre)
- 9050 captures of 410 individuals since 2004

Validating control tools

Which snakes did we CATCH? Which snakes did we NOT catch?

Without validating control tools, you have no idea if your control program is effective

Traps

Brown Treesnake traps

Bushnell

Visual surveys

Traps are size-selective, visual searching is not

Traps are size-selective, visual searching is not

Snout-vent length (mm)

Toxicants

Toxicants for large-scale BTS suppression

80 mg acetaminophen tablet inserted in dead juvenile mouse, aerial or ground delivery

Validating population-level control via toxicants

N = 164 snakes in trial

Results

Results

Detector Dogs

Validation of detector dogs

- 85 trials with radiotelemetered snake in forest
- 35% success at localizing to 5m x 5m area
- Success increased with humidity
- Detection does not equal capture!

Validation of detector dogs

Similar validation needed for canine teams on Gran Canaria

Interdiction

U.S. Department of Agriculture

- 3,000 snake traps around ports and airports
- Fence-line searches at night
- 16 canine teams
- 100% inspection of outgoing cargo and aircraft

- Team members receive two weeks of training on Guam
- Team members on snake-free islands at risk of receiving BTS
- Outreach and education on islands throughout Pacific
- Large searches organized in response to credible snake sightings

Team deployments: Goal is NOT to find the snake that was observed

Team deployments: Goal is to determine whether POPULATION of snakes present

Interdiction and Rapid Response for Canary Islands

Interdiction and Rapid Response for Canary Islands

- Develop and train a Rapid Response Team
- Increase biosecurity measures
- Investigate snake sightings on Tenerife
- Public awareness campaign

Annual funding for Brown Treesnakes

Annual funding for Brown Treesnakes

Research: \$1.3 million

Rapid Response Team: \$200,000

Interdiction: \$5 million

Total: \$6.5 million per year

€250K: Biosecurity (interdiction), Rapid Response

€250K: Biosecurity (interdiction), Rapid Response

€500K: Biosecurity, Rapid Response, research

€250K: Biosecurity (interdiction), Rapid Response

€500K: Biosecurity, Rapid Response, research

€1M: Biosecurity, Rapid Response, research, control

€250K: Biosecurity (interdiction), Rapid Response

€500K: Biosecurity, Rapid Response, research

€1M: Biosecurity, Rapid Response, research, control

Captive assurance colonies, local resource protection

